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Abstract. Using a generalised duality transformation, symmetry considerations and 
assuming criticality to be continuous in the system parameters, we obtain the phase diagram 
for two-dimensional Z ( N )  spin models (four-dimensional gauge Z ( N )  models). Besides 
the phases characterised by the spontaneous breakdown of Z ( N )  symmetries for spin 
systems (the behaviour of the Wilson loop for gauge systems), we predict the existence of a 
soft phase characterised by the vanishing of all powers of order and disorder parameters (a 
Wilson and 't Hooft loop decaying together with all powers like the perimeter). For the spin 
system phases with non-vanishing order and disorder parameters are forbidden when those 
parameters obey non-trivial commutation relations. For gauge systems all combinations of 
Wilson and 't Hooft loops decaying as the area and the perimeter are allowed. Duality 
relations for three-dimensional gauge plus Higgs system are given. 

1. Introduction 

Lattice gauge theories have been intensively studied recently (Wilson 1974, Fradkin 
and Susskind 1978, 't Hooft 1978, Kogut 1979, Elitzur et a1 1979, Horn et a1 1979, 
Ukawa et a1 1979, Mack 1980, Creutz et a1 1980) because they arise naturally from 
Euclidean gauge theories by introducing a lattice in order to provide a short distance 
cut-off. One of the hurdles to be overcome by gauge theories, if they are to be taken 
seriously as candidates for a theory of hadrons, is the explanation of the confinement of 
quarks. If the symmetry of the gauge theory is taken to be SU(N), then its centre Z ( N )  
seems to play a crucial role in implementing confinement ('t Hooft 1978, 1979). 

If this is true, a preliminary step in the study of gauge theories with quarks and 
gluons would be the study of Z ( N )  gauge theories on a four-dimensional lattice. It is 
furthermore instructive to look also at two-dimensional spin models with global Z ( N )  
symmetry (Fradkin and Susskind 1978, Kogut 1979, Domany and Riedel 1979, Balian 
eta1 1975, Bellisard 1978, Korthals Altes 1978, Alcaraz and Koberle 1980), because of 
the many ways in which they are analogous to four-dimensional gauge models and 
because of their greater simplicity, which allows one to obtain exact results (Baxter 
1973, Hintermann et a1 1978, Koberle and Swieca 1979, Koberle and Kurak 1980). 

In this paper we study the phase diagram of two-dimensional Z ( N )  spin and 
four-dimensional Z ( N )  gauge systems (without matter fields). We use two main tools 
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1170 F C Alcaraz and R Koberle 

for this purpose. One is a kind of self-duality exhibited by these systems and the second 
is a continuity hypothesis: we assume that criticality is continuous in the system 
parameters. Whereas for spin systems this seems to be a rather plausible assumption, 
for gauge systems it really is a strong one, since they exhibit first-order transitions 
without a local order parameter. 

For spin systems we obtain phases which can be characterised by the behaviour of 
powers of order and disorder parameters ( S " )  and ( p " ) .  For N > 4  we predict the 
existence of a soft (massless) phase with (S") = ( p " )  = 0, n # 0, N. A short account of 
these results was given in Alcaraz and Koberle 1980't. We correct here an erroneous 
statement made there: N = 4 does not possess a soft phase as claimed in AK, but this 
soft phase appears only for N > 4. 

For gauge systems our proposed phase diagrams look exactly as in the spin case, but 
the order of the phase transitions changes and we have only non-local order and 
disorder parameters: the Wilson loop and its powers (A"(C))  and 't Hooft's disorder 
loop and its powers ( B n ( e ) ) .  Here C and e are closed curves on the direct and dual 
lattice. There is a rough correspondence 

( S " )  f 0 t-, (A" ( C ) )  = exp(-P) 

( S " )  = O*(A"(C)) = exp(-A) 

( p " )  + 0 * (B" (e)) = exp(-P) 

( p  ") = 0 t-, (B" (6)) = exp(-A) 

where A and P are the enclosed area and the perimeter of the curves C and e, although 
this translation scheme is incorrect in important details. For example, we may have 
phases in which both (A'(C)) and @"(e)) have a perimeter decay, but if S and p have 
non-trivial commutation relations, they cannot simultaneously have non-vanishing 
averages. We again predict a soft phase for N > 4 in which all powers (except n = 0, N )  
of (A" (C)) and (B" (e)) decay as the perimeter of the curves C and e. 

In 0 2 we set up the transfer matrix and duality formalism for spin systems, which 
carries over identically for gauge systems. In § 3 we explain our results for spin systems 
considering N < 8 for simplicity of presentation. N = 6 is an interesting example which 
is worked out in some detail. Gauge systems are treated in 9: 4, where all four types of 
phases predicted by t' Hooft (1978) are shown to be realised. In $ 5 we briefly sum up 
our conclusions. 

Mean-field calculations in support of our claims are presented in appendix 1. For 
three dimensions the Z ( N )  gauge plus Higgs system is self-dual and it is briefly 
introduced in appendix 2. 

2. 'Transfer matrix and duality for spin systems 

Our Z ( N )  spin system is defined on a two-dimensional square lattice with sites labelled 
by the vector i .  On each lattice site there is a spin variable S ( i )  satisfying 

t Henceforth referred to as AK. 
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We may thus equivalently introduce integer-valued variables n (i) for each site: 

S ( i )  = exp[(2~i /hi)n( i ) ] ,  n ( i ) = O ,  1 , 2 , .  . . , N - l .  (2.2) 

If we restrict ourselves to nearest-neighbour couplings of ferromagnetic character, 
the most general Z(N)-invariant action will be 

(2.3a) + . ,  , + ~ ~ [ ( S + ( i ) S ( j ) ) " + c C - 2 1  2 I 
471. 

= -1 ( J l {  cos[ ?(n (i) - n ( j ) )  - 1) +J2[ cos[ y ( n  (i) - n ( j ) ) ]  - I ]  
(ii) N 

(2.3b) 

where ( i ,  j )  indicates a sum over nearest-neighbour sites and I? is the largest integer 
smaller than or equal to N/2. 

Our discussion will be based on the transfer matrix T. It is an operator acting on the 
Hilbert space H as follows. If we call the vertical direction of our two-dimensional 
lattice the 'time' axis, then at a particular time t = to, the state of the system is described 
by a vector in the direct-product Hilbert space H spanned by In) = n:=?',&2 ln( i ) ) ,  
where In (i)) describes the spin state at site i at t = to and M is the size of the lattice. H 
thus has dimension (N)'? We choose In( i ) )  as eigenstates of the unitary operator S ( i ) :  

(2.4) S(i) in  (i)) = e x p [ ( 2 ~ i / ~ ) n ( i ) ] j n  ( i ) ) .  

We define T as the operator whose matrix elements are exp(-PA): 

(n ' lTln)=exp{ Kai l [ ( S ' ( i ) S ( j ) ) " 1 + c c - 2 ]  
(ij) a, = 1 

(2.5) 

where In) and In') are the state vectors of two nearest neighbouring rows. T consists of 
two factors: T = TIT2, where T I  contains the interactions within a row and is thus 
diagonal: 

" K, 
T1 = e x p x  1 L[(S+(i)S(i+1))ai+~c-2]. 

i a,=l  2 

T2 contains the off-diagonal terms of the form 

where i and j are nearest-neighbour sites on adjacent rows. In order to express (2.7) as 
a matrix element of some operator, we introduce rotation operators R( i ) ,  which rotate 
the spin on site i by an angle 271./N: 

R ( i ) ( n ( i ) ) =  (n ( i )+  l ) (modN) .  (2.8) 
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Our basic operators S ( i )  and R( i )  obey the relations 

S N  = R N  = 1, 

R "R' = R a + P  (mod N )  

Tr(S) = Tr(R) = 0 

(2.9) 

R S  = exp(2ri /N)SR 

If we expand the exponential in (2.7) using S N  = 1 the result may be written in terms of 
the matrix elements 

(for S and R on the same site, commuting otherwise). 

(n ' ( i ) lR"/n( i ) )= 6.,,,+,(modN) (2.10) 

as 

Using the identity? 

(2.11) 

(2.12) 

based on R N  = 1, we finally obtain T as 
fi 

(K { [R ( j)]"] -+ HC}. (2.1 3 1 T = e x p C  2 { [ S + ( i ) S ( i + 1 ) ] " ~ + ~ c - 2 } e x p ~  - 
r;i K, 

I a ,=l  2 j a,=() 2 

Summing over a complete set of intermediate states, we see that the partition 

Z ( K )  = Tr [TI", M+W (2.14) 

function can be expressed as 

{SCi)) 

where we choose periodic boundary conditions. 
We now define dual variables (Kadanoff and Ceva 1971) as follows: 

(2.15) 

where the non-local disorder variable p (F) satisfies 

p+(F)p(F+ i) = R'(i + I) .  (2.16) 

With the aid of the variables (2.15) our transfer matrix may be expressed as 

Since a(;) and p ( F )  satisfy the same Z ( N )  algebra as S ( i )  and R( i ) ,  we see from 
equation (2.17) that our system is self-dual in the sense that 

z({K}, VpI) = ez(CfaI, {KO}) (2.18) 

where e is an irrelevant constant. 

f The functions fe defined here differ by a factor of two from those of AK. 
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Our duality transformation 9: K, - f a  may be more conveniently expressed in 
terms of the variables 

x,=exp (:I: Ks [ cos (2r)-1]), - ~N- ,=x , (modN) .  (2.19) 

Diagonalising the cyclic matrix R (Wu and Wang 1976) we may immediately solve 
equation (2.12) for the functionf, in order to obtain'an expression for the dual variables 
Im = 9(xp) :  

(2.20) 

The transformation x, +I, maps one Z(N) model with coupling constants K, into 
another Z(N) model with coupling constantsf,(K). Yet there are some models which 
are self-dual (in the sense of Kramers and Wannier 1941). For these special models the 
transformation K, - f , (K)  is equivalent to a change in temperature. This occurs for 
the Potts model (Potts 1952), where KI = K2 = . . . = KN and f l  = f 2  = . . = fN so that 
the temperature change k T  + kT' = J a / f a  implements x, -+ I,. Another model, albeit 
with temperature-dependent couplings J,, is the Villain model (Villain 1975). It 
approximates the model defined by K, = KSaO at low and high temperatures and its 
partition function is given by 

(2.21) 

where 
+m 

exp gp(x) = c exp --(x -27;ni2]. 
n=--30 K (2.22) 

The Villain coupling constants x," are 

exp[-(2.rr2/N2T)(a - - N ~ I ) ~ ]  
x:(T)= Z;?--,exp(-2~ 2 2  n /T) (2.23) 

and their transformed couplings f:(T) are given by 

I:(T) = x,"(4.rr2/N2T). (2.24) 

From equation (2.20) we see that the hyperplane 

(2.25) 

is left invariant by x, +fa. This hyperplane contains the critical points of the Potts and 
Villain models and on it 9 is a linear transformation. Thus for N < 7, when we havl: 
only three or less independent coupling constants, the fixed points 2 of x, + 9(x , )  lie on 
a straight line passing through the Potts and Villain critical points. 

For N > 7 2 is an (N/4)-dimensional hypersurface obtained by solving the first N/4 
equations I, =x,, a = I ,  2 , .  . . , N/4. 
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3. Phase diagram for spin systems in two dimensions 

Our aim is to obtain as much information as possible about the surface C of critical 
points, It is known (Frohlich and Lieb 1979) that each of our Z ( N )  models has at least 
one critical point at low enough temperature, where spontaneous magnetisation sets in, 
that is, for a given set of couplings .Tu, the thermodynamic path I’ obtained by varying the 
temperature from 0 to CO strikes X at least once and at the low-temperature side we have 

( S )  f 0. (3.1) 

If there is only one phase transition, then this critical point must be a fixed point of 

fa ( K )  = K,, (3.2) 

( P )  f 0 (3.3) 

x, + i, that is it must satisfy 

and since the duality transformation interchanges order and disorder we have 

at the high-temperature side. Notice that in general the duality transformation does not 
map I‘ onto itself, but this happens only for models which are self-dual in the 
Kramers-Wannier sense. 

If there is more than one critical point, 9 only maps one Sranch of C into another. In 
this case we look at limiting models, where some K,  are either zero or infinity, whose 
critical surface X we already know, and then trace out X by assuming that critical points 
do not disappear. This Continuity assumption-that criticality is continuous in the 
parameters of the model -can easily be proved, if the phases are distinguished by a 
symmetry which is spontaneously broken (Landau and Lifshitz 1958), but in the present 
paper we will assume that it is always true. 

For N = 2 we obtain the well known Ising model and for N = 3 the three-state Potts 
model having one critical point and a second- (or higher-) order phase transition. 

For N > 4 we shall draw phase diagrams in terms of the variables x,, a = 1, , . . , $?, 
We ‘get a feeling’ for these variables by writing them as 

x, = exp(-p&,). O S F , < C O  (3.4) 
where E, is the energy required to rotate a spin through an angle 277a/N. Thus in the 
region where E #  > E N - I >  . . . > E I  or x1 > x2 > . . . > x,q all spin states are energetically 
available and at high enough p the Z ( N )  symmetry will be completely broken. If we 
lower p sufficiently to gain enough entropy there will be a transition where the Z ( N )  
symmetry is completely restored. On the other hand, in the complementary region, for 
every subgroup of Z ( N )  one can find a domain in x space where the corresponding 
symmetry is completely broken. For N = 6, for example, this means that there is a 
phase transition where the whole Z(6)  symmetry is broken, besides regions where Z(6)  
breaks down to Z ( 3 )  or Z(2) .  This follows from our continuity assumption and the fact 
that for every Z ( N ’ ) ,  N ’ / N  = integer, one has at least one transition, by taking suitable 
limits K, + 0 or K ,  + CO. As N -+ a3 our model becomes U( l )  invariant and all the above 
transitions collapse to T = 0. 

It is known (Elitzur et a1 1979) that the Villain model, which passes through the 
region x1 < x2 < . . . < xs, has more than the two phases? characterisable by Z ( N )  
symmetry only. Thus there exists an extra phase containing the self-dual line, which 

t Namely Z ( N )  is either completely broken or completely unbroken. 
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implies that in this phase the duality transformation interchanges order with disorder. 
As we cross from the low-temperature phase into this extra phase, the order parameter 
goes to zero and consequently in this phase ( S )  = 0 = ( p ) .  This in turn requires (t' Hooft 
1978) this extra phase to be 'soft' with power-law decaying correlations, unless this 
phase is still characterised by some symmetry. This happens for N = 4 in the region 
x l < x z ,  where ( p ) = ( S ) = O ,  but we still have a residual Z(2)  symmetry. Thus ( p )  
vanishes simply due to Z(2 )  charge conservation (as does ( S ) )  and no zero-mass 
behaviour can be deduced in this case as we erroneously did in AK. A similar situation 
occurs for N = 6, as we shall discuss below. 

Although in special cases this zero-mass behaviour has been shown to hold (Elitzur 
et a i  1979), a general proof that ( S " )  = ( p k )  = 0 with S " p k  = exp[(2.rri/N)nk]pkS", 
kn # N, implies massless particles is unavailable. The heuristic argument, to be made 
into a proof, goes as follows. A phase having ( S " )  = 0 is disordered and the system takes 
no account of boundary conditions. The kink operator p" applied to this vacuum 1) (to 
use the Hamiltonian language of Kogut and Susskind (1975)) usually has non-zero 
overlap with the original vacuum state, implying ( p " )  # 0. To avoid this conclusion 
enough long-range correlations must exist in the system so that p 1) is orthogonal to I), 
while still maintaining ( S " )  = 0. The only way out is to assume a power-law decay for 
the correlations, which implies massless particles. Note that this argument assumes that 
the p k  and S" operators 'know' about each other, meaning [ p k ,  S " ]  # 0. For this reason 
the case kn = N must be excluded. 

Due to this extra phase a bifurcation must occur at some [N/4]-dimensional 
hypersurface E. Since the Potts model has only one critical point for N > 4 (Hinter- 
mann et a1 1978) and since the transition is of first order (Baxter 1973), the Potts critical 
point cannot belong to E. Otherwise we would have to join asoft phase with long-range 
fluctuations to a region with no such fluctuations. As we move along from the Potts 
critical point in the direction of the critical point of the Villain model, the latent heat 
diminishes and we identify E with the region where the latent heat has just vanished. A 
mean-field calculation (appendix 1) shows just these features. 

When N is a prime number everything stated above about the soft phase holds for all 
powers of S and p. For example, if ( S )  # 0 at low temperature, also all powers of S must 
acquire non-vanishing expectations, and these will also vanish once we cross into the 
soft phase. 

- 

Consequently we have in this phase 

( S " )  = ( p " )  = 0, n = l , 2  , . . . ,  R, (3.5) 
For N # prime number the symmetries of the systems do not distinguish the various 
powers of order and disorder parameter in the region x1 > xz  > . . . > xfi, so that we 
expect equation (3.5) to hold for any N > 4. This soft phase is bordered by two phases 
with ( S " ) f O ,  ( p k ) = O  and ( S " ) =  0, ( p k ) f O ,  k, YI = 1 , 2 , .  . . ,# and exponentially 
decaying correlations. Since the soft phase is not related to the spontaneous breaking of 
a discrete symmetry it survives the N + CO limit and shows up in the U(1)-invariant X Y  
model. 

Let us now analyse several instructive examples in detail. 

3.1. N = 4  

The phase diagram for this case, shown in figure 1, is already known from Wu and Lin 
(1974), since Z ( 4 )  is a special case of the four state Ashkin-Teller (1943) model. In the 
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Figure 1. Schematic diagram of the Z(4)  model. The straight line AM is self-dual. The 
curves a, b and c represent the thermodynamic paths of the scalar Potts (.TI = J2) ,  vector 
Potts (J2 = 0)  and Villain model respectively. P is the crifical point of the four-state Potts 
model and 11, I*, I3 are critical Ising points. 

limit J2  + CO, J1 + 0 or J2  + 0 we obtain Ising models with critical points TI, I2 and I3 
respectively. 

This can most easily be seen by introducing two Ising spins U and T at each site, 
connected to S by 

The interaction then becomes 

For J2  = 0 we obtain two identical decoupled Ising models (Suzuki 1967) corresponding 
to curve b of figure 1. For J 1  = 0 we obtain a system with the local gauge symmetry 

The gauge transformation (T + UT produces an Ising model in the variable UT = S2. 
At the point I2 this variable acquires a non-zero average as we lower the temperature 
and the Z ( 4 )  invariance is broken down to Z(2).  

Analogously for J2 = CO as we decrease the temperature S acquires a non-zero 
average, completely breaking the Z ( 4 )  invariance. Carrying out a perturbation expan- 
sion around J 1  = 0 and J2  = CO we establish the following picture: 

Phase 1 : ( S )  # 0, ( p )  = 0;  
m f O ;  all symmetries broken 

( S 2 )  f 0, ( p 2 )  = 0; 



2 0  spin and 4 0  gauge systems 1177 

Phase 2: ( S )  = 0 ,  ( p )  # 0; 
m # U ;  Z(4) invariant 

(S')  = 0, ( p 2 )  # 0 ;  

(S2) # 0 ,  ( p ' )  # 0.  

Phase 3: ( S )  = 0, ( p )  = 0 
+ m  =o(!!) Z ( 2 )  invariant. 

Due to the Z(2)  invariance of phase 3 the charge selection rule operating here 
allows different sets of intermediate states to contribute to ( S 2 ( i ) S 2 ( 0 ) )  and ( S ( i ) S ( O ) ) ,  
which is responsible for the contrasting expectations ( S )  and (S2).  That this phase 
contains no massless excitations also follows at the J2 + CO limit. Then S' is frozen, 
implying a = T :  

(3.9) 

which falls off exponentially along the line x1 = 0 and x2 # 11, this behaviour persisting 
also for x1 = 0 + E .  

Finally notice that we have realised all combinations of ( S " )  and ( p  k ,  equal and not 
equal to zero, except ( S " )  # 0, ( p k )  # 0. This is impossible whenever S" and p k  have 
non-trivial commutation rules. For, taking the average of S " ( i ) p k ( j )  = 
e x p ( 2 . i r i k n / N ) p k ( j ) S " ( i )  and examining ( i  - j )  + CO, we obtain from clustering 

( S " ) ( p k )  = exp(2nink/N)(S")(pk) (3.10) 

but this is impossible unless kn = N. In fact (S') # 0 and ( p ' )  # 0 is the only case allowed 
for N = 4 and is realised in phase 3. 

3.2. N = 5  

We have spontaneous Z(5) symmetry breaking when crossing the straight line E1E2 of 
figure 2, and two 'soft' phases due to the symmetry Z(K1, K2)  = Z(K2,  K1) of the 
partition function. The bifurcation at E is also revealed by the mean-field calculation of 
appendix 1 (see figure 6). 

~ 

3.3. N = 6 
The phase diagram is shown in figure 3, with 

x1  = exp[-(K1/2 + 3&/2 + 2&)] 

x2 = exp[- : ( K ~  + K ~ ) ]  

x3 = exp[-2(K1 + K 3 ) ]  

with the self-dual line given by 
V V V x1-x1 x2-x' x3-x3 

P v - - T - - - v = ~  x1-x1 X 2 - x '  x 3 - x 3  

-- 

(3.11) 

(3.12) 

where xp and x v  are the critical points of the Potts and Villain models respectively. 

variable a and a Z(3)  variable Z (Domany and Riedel 1979): 
Our insight into this model is aided by writing our Z(6 )  variable S in terms of a Z (2 )  

S = ax. (3.13) 
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Figure 2. Schematic diagram of the Z(5)  model. ‘The straight line AM is self-dual. The 
curves a ,  b and c represent the thermodynamic paths of the scalar Potts [.TI = J z ) ,  vector 
Potts (J2 = 0 )  and Villain model respectively. P is the critical point of the five-state Potts 
model and El, E2 are bifurcation points of the self-dual line at which the soft phases 
originate. 

Figure 3. Schematic diagram of the Z(6j model. The straight line AM is self-dual. The 
straight and burved lines going from ( 0 ,  0, 0) to (1, 1, 1 j are the thermodynamic paths of the 
six-state Potts and Villain model respectively. The critical points are: P, six-state Potts; 11, 
12, Ising; P I ,  P2, three-state Fotts. The soft phase originates at E. 
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The action then becomes 

(3.14) 

The limits J2 + CO (xl = x2 = 0) and J1 = J2  = 0 (x2 = 1, x1  = x3) are Ising models with 
critical points I1 = (0, 0, 4 2  - 1) and I2 = (42 - 1, 1, J 2  - 1). The other limits J 3  + CO 

(xl  = x3 = OJ and J1 = J 3  = 0 (xl = xz, x3 = 1) a s  Z ( 3 )  Potts models with critical points 
PI  = (0, (43 - 1)/2,0) and P2 = ((43 - 1)/2, (J3 - 1)/2, 1). 

It is instructive to study the phases on the decoupling surface J1= 0 (x1 = ~ 2 ~ 3 ) ,  

where we have two independent Z(2)  and Z ( 3 )  models. In figure 4 we show the 
projection of this surface on the x2, x3 plane, where the straight lines are 
the critical lines of the Z ( 2 )  and Z ( 3 )  models. All four phases are massive, because on 
this decoupling surface the correlation functions of the Z(6)  variables are products of 
Z ( 2 )  and Z ( 3 )  correlation functions, e.g. 

(S( i )S(O))  = (a( i )c+(o))(W)Xo))  (3.15) 

and 

and everywhere except at the critical lines the right-hand side decays exponentially. 

3 

Figure 4. Projection of the decoupling surface onto the x 2 ,  x j  plane. 

In the low-temperature phase 4 the Z(6)  symmetry is completely broken: ( S " )  # 0, 
( p " )  = 0 ;  n = 1,2, 3. In the high-temperature phase 5 the symmetry is completely 
restored: ( S " )  = 0, ( p " )  # 0 ;  n = 1,2,3. Phase 1 is Z ( 2 )  invariant, because (a )  = 0, 
(E) # 0 implying that (S) = 0, (S2)  # 0, (S3 )  = 0. Phase 2 is Z ( 3 )  invariant because now 
( L T )  # 0, (E) = 0 implying that ( S )  = 0, ( S 2 )  = 0, (S3)  # 0. But our dual transformation 9 
interchanges region 1 with region 2. Remembering that 9 also interchanges order and 
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disorder, we find that in phase 1 ( p )  = 0, ( p 2 )  = 0, ( p 3 )  # 0 and in phase 2 ( p )  = 0, ( p 2 )  # 0, 
( p 3 )  = 0. Notice that phases 1 and 2 are massive in spite of ( p )  = (S) = 0 and [p ,  SI # 0, 
because the vanishing of the order and disorder parameters is just a consequence of the 
Z(2)  and Z(3)  selection rules operating in phases 1 and 2. Thus no zero-mass states 
have to be invoked to explain the simultaneous vanishing of order and disorder. We 
summarise these results in table 1. 

Table 1, 

4 # O  # O  # O  = O  = O  = o  
5 = 0 = o  = O  # O  f O  f O  
1 = O  #O = o  = O  = O  f O  
2 = o  = O  #O = O  # O  = o  

The complete phase diagram of figure 3 includes a phase in which (S“) = 0, ( p “ )  = 0, 
n = 1 ,2 ,  3, which now implies that this phase is soft. It is bounded by second- or 
higher-order lines due to its massless character. Since we know the Potts transition to 
be of first order, the ‘soft’ phase has to appear at some position E (#P), which can be 
estimated by mean-field calculations (appendix 1). 

3.4. N = 7 

In figure 5 we show the phase diagram for N = 7, exhibiting spontaneous Z ( 7 )  breaking 
along the three straight lines and three ‘soft’ phases. This threefoldness is a 
consequence of the cyclic symmetry of the partition function in K 1 ,  K z ,  K3.  

4. Z ( N )  gauge system in four dimensions 

This section is dedicated to an analysis of the phase diagrams of four-dimensional Z(N) 
gauge systems. A large number of structural analogies between spin systems in two 
dimensions and gauge systems in four dimensions have been revealed (Kogut 1979), so 
that the argument of this section would be expected to be similar to that of 5 3. 

To construct a system with a local Z ( N )  gauge symmetry (Wegner 1972) on a 
four-dimensional hypercubic lattice we place a Z(N) variable S(r,  p )  = S(r  + p, - p )  at 
each link. Here r indicates a lattice point and p the direction of the link. Our action is 
to be invariant under a local gauge transformation at site r defined by the operation 
G(r)  of rotating all links emanating from that site through 277,” (-27r/N), if the links 
are parallel (antiparallel) to the basis vectors. 

The simplest term with this symmetry is the ‘plaquette’ defined as the oriented 
product of links around an elementary square 

(4.1) AP = S(r ,  k ) S ( r  + p ,  v)S+(r +p, + Y, p ) S c ( r  + Y, -v). 
The most general locally Z(N)-invariant action of ‘ferromagnetic’ type is then 

L, I ‘‘ J ,  
A - 1  1 - ( [ A p ] O + c ~ - 2 )  

P a = l  2 (4.2) 
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I 
t XI 

Figure 5.  Schematic diagram of Z ( 7 )  model. The straight lines A I M L ,  A2M2, A3M3 are 
self-dual. The straight and curved lines going from ( O , O ,  0) to ( I ,  1, 1) are the ther- 
modynamic paths of the seven-state Potts and Villain model respectively. P is the 
seven-state Potts critical point and El, E*, E3 are soft-phase bifurcation points. 

where Xcp extends over all plaquettes of the lattice. If only J1 is non-vanishing we obtain 
Wilson’s action (Wilson 1974), which has been studied by many authors in the 
Euclidean (Ukawa et a1 1980) and Hamiltonian formulation (Horn et a1 1979). 

As in the spin case we shall introduce disorder variables and the same duality 
transformation, For this purpose we reduce the variables to a minimum number of 
independent ones. First we choose the temporal gauge 

S(r ,  2) = 1 (4.3) 

in which the action becomes 

t M / 2  KJ Ja 
A = - 2 { $(S(x1x2x3xJ; i)S+(x1x2x3x4+ 1; +cc-21  

x4=-M/2 X I . X I , X ~  i a = l  

i , j  a = l  
I <I 

As in the spin case the corresponding transfer matrix is 

fi K, ~ = n  n expj 1 - [ ( ~ ( r ;  ~ ( r + ~ , ~ ) ~ + ( r + ~ ;  F)s+(~;  7 ) ) a  + w c - 2 1  
r 1.1 a = l  2 

I <I 

where S(r ,  i) are now unitaryoperators and R(r,  i) are link rotation operators satisfying 
the algebra (2.9) and fa are defined by equation (2.12). 



1182 F C Alcaraz and R Koberle 

Since the temporal gauge does not fix the configurations on the gauge-invariant 
subspace 

G(r)l) = 1 )  (4.6) 

(4.7) 

we use the identity 

1 = G(r)  = R(r ;  ?)R+(r;  -?)R(r;  2)R+(r; -?)R(r; 3)R-'(r; - 3 )  
to eliminate further dependent variables, namely 

L 

R ' ( X ~ , Y ~ X ~ ;  !i)= n 11 R ( x l x 2 x 3 - n ;  i )R+(x1x2x3--n;  -i). (4.8) 
t i20 i = 1  

Since now all terms commutc with S ( x l ,  x 2 ,  x 3 ;  3) we may choose the axial gauge 

S ( r ;  3 )  = I .  

For these indepcndent variables we now introduce dual variables existing on the 

(4.9) 

Notice that in the transfer matrix formulation, we introduced operators existing on a 
three-dimensional lattice. 

The dual partner of the plaquette variable (2-simplex) is a link variable (l-simplex) 
of the dual lattice 

a(;, i) = S ( r  + i; j j S ( r +  f + j ;  f ) . S + ( r  + i-t f ;  j ) S + ( r  + f ;  f j  (4.10) 

where i, j ,  k are cyclic permutations of 1 ,2 ,3 .  The non-local dual disorder variables are 

dual lattice with sites 
1 1 1  

i = i' + ( 2 ,  3 9 2 ) .  

p(?;  1) = fl R + ( x l +  1, x2, x3 - n ; 2) 
n z o  (4.11) 

p ( i ;  2) = n R ( x l ,  x 2 +  I, x 3 - n ;  1). 
I7 z u  

These p variables associated with an elementary square perpendicular to the 3 
direction, which defines a link on the direct lattice, are used to obtain R + ( r ,  3 ) :  

R+(r; 3 ) = p ( ~ - ? - ? ;  ? ) p ( ; - 2 ;  2 ) p + ( i ;  - i ) p + ( i - f ;  -2). (4.12) 

The analogous expressions for R+(r, 7 )  and R+(r, 2) are, in the axial gauge for the 

R+(r; ? ) = p ( ? - - ! i ;  - 2 ) p + ( i - 2 ; 2 )  (4.13) 

R+(r;  2 ) = p ' ( ; - ? ;  - ? ) p ( ? - ? ;  1). (4.14) 

dual variables p ( i ;  3 )  = 1, 

We easily verify that p and a satisfy the same algebra as S and R. Expressing the 
transfer matrix in terms of them, we obtain 
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yielding the same duality relation (equation (2.18)) as in the spin case 

(4.16) 

'The reasoning following equation (2.20) also applies here. As in the spin case the 
Potts (xl = x2 = . . . = x N )  and Villain models are self-dual in the Kramers-Wannier 
sense. The Wilson model (Jz = J3 = . . . = Jfi = 0) obeys this duality only for N < 5 .  (In 
the time-continuous Hamiltonian formulation (Horn et a1 1979) this model is self-dual 
for any N, because in the limiting procedure involved to make the time variable 
continuous the terms violating self-duality go to zero.) 

Let us now analyse the phase diagram of our gauge systems. We conjecture that 
these diagrams appear exactly as the corresponding ones for the two-dimensional spin 
systems. Only the characterisation of the phases and the order of the transition 
changes. This expectation is borne out by mean-field calculations given in appendix 1. 
Thus one would naively expect that at low temperatures, where the two-dimensional 
system is in the ordered phase and ( S )  # 0, the correlation functions of the gauge system 
fall off slowly, that is, the Wilson loop 

A ( C ) = n S  
C 

(4.17) 

(where C is a closed curve of links on the lattice) decays as the perimeter of C. In this 
phase the disorder parameter of the spin system has vanishing average ( p )  = 0, so that 
the corresponding gauge system variable, 't Hooft's disorder loop 

(4.18) 

(where 
as the minimal area enclosed by e. Thus one obtains the correspondence 

( S )  # O++A(C) =exp(-P) ( S )  = O*A(C) -exp(-A) 
(4.19) 

( p )  # O * B ( ~ )  =expi-P) (p)=O-B(c)=exp(-A)  

which, as we shall see, is not completely correct. For example, we showed in 8 3 that we 
cannot have simultaneously ( S " )  # 0 and ( p k )  Z 0 in the same spin phase, unless S" and 
p k  commute. On the other hand, for gauge systems we do obtain phases in which both 
A(C) and 3(c) obey area and perimeter decays (this occurs for N = 6). 

is a closed curve of links on the dual lattice) should decay much faster, namely 

Looking now for particular values of N we obtain the following picture. 

4.1. 

For N = 2, 3 our action coincides with Wilson's, since there is only one coupling 
constant. Monte Carlo calculations (Creutz et a1 1979) and heuristic arguments 
indicate that this is a two-phase system (magnetic and electric confinement phase) 
separated by a first-order transition. Our duality equation (2.20) locates these at 
(Yoneya 1978): 

(4.20) 

with area decay at high temperatures and perimeter fall off at low temperatures for the 
Wilson loop (and opposite behaviour for 't Hooft's loop). 
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4.2.  

For N = 4 our parameter space is two-dimensional, with the self-dual line given by 

x1 = exp[-(K* + 2K2)I 

x2 = exp[-2K1]. 
1+2x1+x2=  J4; (4.21) 

If a given model (xl, x2) suffers only one phase transition, its critical point is located at 
the intersection of equation (4.21) with the model's thermodynamic path r. 

To gain some insight into the phase diagram let us proceed as in the spin model and 
look at limiting cases. To this end we write the Z(4 )  variable in terms of two Z ( 2 )  
variables as in equation (3.6). The action then becomes 

Ji 

4 P  
Aq=  --E [ ( ( ~ ( 1 ) ( ~ ( 2 ) a ( 3 ) ( ~ ( 4 )  + ( ~ ( 1 ) 7 ( 2 ) ~ ( 3 ) ~ ( 4 )  

- ~ ( 1 ) ~ ( 2 ) ~ ( 3 ) ( ~ ( 4 )  - a ( l ) a ( 2 ) ~ ( 3 ) ~ ( 4 ) )  f ( ( T e T ) ]  

- J2 1 a( l ) a ( 2 ) ~ ( 3 ) ~ ( 4 ) 7 (  1)7(2)7(3)~(4)  + constant. (4.22) 

It is now evident that .TI-+ 0 (x2 -+ 1) gives a Z (2 )  gauge model for the variable 
S 2 = m  with Ising critical temperature xT =&1. Here (A2(C))  changes from 
perimeter to area decay. The dually transforGed model = 0 ( J2  + CO) must also be a 
Z (2 )  gauge theory with critical point xz = J 2  - 1. Appealing to our continuity hypo- 
thesis we now continue these two critical points into the interior of the phase diagram. 
(The stability of these points, when we depart from the lines x1 = 0 and x2 = 1, together 
with the characterisation of the resulting phases given below, can be checked by high- 
and low-temperature perturbation theory. This can be done for any N.) 1/N expan- 
sions now indicate (Pearson et a1 1980) that all Potts gauge models have a first-order 
transition and w e  will assume that this transition is unique (located at x; = x; = , . . = 

xh = ( J N +  l)-' from duality). Furthermore, Monte Carlo experiments also show only 
one first-order transition for Wilson's Z ( 4 )  model. Thus we conclude that a bifurcation 
occurs, which we locate at the Potts point by analogy with the spin case. The 
conjectured phase diagram is shown in figure 1, where the phases are characterised as 
follows. 

Phase 1 (magnetic confining phase): 

P 

(A" (C))  - exp(-P) 

( B  (e)) - exp( -A) 
n = l , 2  

Phase 2 (electric confining phase): 

Phase 3: 

(A(C))  - exp(-A) 

(A2(C))  - exp(-P) 

(only fundamental charges confined) 
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(no massless particles present in this phase). 

Since [A2, B2] = 0 ’t Hooft’s argument in favour of massless particles does not apply 
in phase 3. In fact it would be very difficult to reconcile a soft phase limited by 
first-order phase boundaries. (Recall that at first-order phase transitions no long-range 
effects exist, which would be required by massless excitations.) In phase 3 the 
fundamental electric and magnetic charges are confined, whereas states created by S 2  
and p2  appear asymptotically. 

4.3.  

For N = 5 we ha1e a two-dimensional coupling constant space with the self-dual line 
1 + 2 x 1 + 2 ~ 2 =  J5. 

As in the spin case the Z(5 )  algebra of A ( C )  and B ( E )  requires a soft phase (Elitzur 
et a1 1979) in the region x1  >x2,  and we again suppose bifurcation to occur at some 
point E different from the Potts transition. Due to its massless character this phase must 
be bounded by second- (or higher-) order phase transition lines, whereas at the 
transition is first order (Creutz et a1 1979). The three phases are characterised as 

Phase 1: A”(C)-exp(-P) ,  B k ( 6 )  -exp(-A) m f O  

Phase 2: A ” ( C )  = exp(-A), B (e) = exp(-P) m f O  

Phase 3: A“(C)=exp(-P) ,  B ‘(e) = exp(-P) m=O 

n, k = 1,2 ,  

and are shown in figure 2. 

4.4. 

N = 6 is a rather interesting and instructive example of possible situations that may 
occur, The parameter space is three-dimensional with x, given by equation (3,11), the 
self-dual line going th’rough the Potts and Villain critical points (see figure 3). 

As in the spin case (equation (3.14)) we write the Z(6)  variable as a product of Z(2)  
and Z(3 )  variables, with the action taking the form 

Ag = -1 -a(l)a(2)~~(3)a(4)(C(l));(2)C+(3)X+(4)+~~) 
P [: 

(4.23) 

The same decoupling as in the spin case holds here on the surface x1 = x2x3 (J1 = 0). 
We obtain the same projection on the x2, x3 plane shown in figure 4. The critical lines 
correspond now to first-order transitions (Creutz et a1 1979). Since S ( i )  correlation 
functions are products of a(i)  and C ( i )  correlation functions (as in the spin case equation 
(3.15)) we obtain the result shown in table 2, where we used that (&a) - exp(-P) for 
T < T,, (IIca) - exp(-A) for T > T,, and analogously for C. 

1 J2 

2 
+-(C(1)C(2)C+(3)XL(4)+cc) + J3a ( l ) a (2 )a (3 )a (4 )  +constant. 
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Table 2. 

Phase ( A ( C ) )  (Az(C))  ( .43(C)) ( B ( e ) )  ( E 2 ( d j )  ( E 3 ( 6 ) )  Condensate 

4 exp(-Pj exp(-P) exp(-P) exp(-A) exp(-A) expi-A) E 

5 expi-A) exp(-Aj expi -A)  exp(-P) exp(-Pj exp(-P) m 
1 exp(-A) exp(-P) exp(-A) exp(-Ai expi-A) exp(-Pj 2e, 3m 
2 exp(-A) exp(-A) exp(-P) exp(-A) exp(-P) exp(-A) 3e, 2 m  

For the dynamical mechanism producing this result we propose the following. In 
phase 4 (phase 5 )  we have a condensate of single, double and triple charges (monopoles) 
confining the monopoles (charges). Phases 1 and 2 have a more complicated structure. 

In ‘superconducting language’ we may state the following. In phase 4 (phase 5 )  we 
have a condensate of all charges (monopoles) confining the monopoles (charges). In 
phase 1 the condensate consists of double charges and triple monopoles, which is 
allowed by the perimeter decay of (A2(C) )  and (B3(?) ) .  This condensate confines the 
other charges and monopoles. Whether the dynamical mechanism is really 
confinement or bleaching (Rothe et a1 1979) can only be verified by examining 
correlation functions for small distances or coupling additional quantum numbers, 
whose emergence can be checked. 

4.5. 

For N = 7 we show the phase diagram in figure 5. Mutatis mutandis we have the same 
interpretation as for N = 5 .  

5. Conclusion 

We have proposed very plausible phase diagrams for two-dimensional spin and 
four-dimensional gauge systems. These appear identical in the two cases, differing only 
in the order of the transitions. We exhibit a mean-field calculation where this is true. 
The order of the gauge system transition is always lower than that of the corresponding 
spin transition. The phases of the spin system are characterised by the behaviour of the 
various powers of order and disorder parameters. The simultaneous non-vanishing of 
both is forbidden unless they commute. For gauge systems the phases are characterised 
by the decay properties of powers of the Wilson and ’t Hooft loops. All combinations of 
perimeter and area decay of these loops are allowed. 
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Appendix 1. Mean-field approximation 

The mean-field approximation (MFA) neglects fluctuations, reducing computations to 
those of a one-body problem. For that purpose an external field H is coupled to the 
local order parameter field and H is determined self-consistently. Since such an order 
parameter does not exist for systems with a local gauge symmetry, applying MFA in this 
case is problematic. In  the following we briefly describe the well known MFA for spin 
systems in order to compare it with results for gauge systems. 

A 1.1. Spin models 

The partition function for a lattice with M sites is 

Following Balian et a1 (1975) we define the uncorrelated measure 

to be used in the convexity inequality of the exponential function 

( A l . l )  

(A1.2) 

(A1.3) 

* J,  H 
exp{ P c c --[iS,J,*,,Y +ccI-c~(S’;’+sEI)] (A1.4) 

and remembering that we have M sites and M d  links of nearest-neighbour pairs we 
obtain 

( I , ] )  a =  I 2 

I3 
-Pf F 9N(H) - H 9 k ( H )  + p d  1 Jet: ( H )  5 GN (H,  P )  (A1.S) 

a = l  

where 

For a given P we determine H by maximising the right-hand side of (A1.S): 

-Pf 3 SUP (GN (H,  P 1). (A1.6) 
H 

With this scheme we obtained the following results: 
(i) All Potts models for N F 3 have one first-order transition. 
(ii) For N b 5 we applied MFA to models whose r crosses the self-dual surface 

between P and E (see figures 2, 3, 5 and 6). As we move from P to E the latent heat 
diminishes and at the same time a second maximum of GN(H) appears, indicating a 
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bifurcation of C at E. In figure 6, curve c, we show such a result for a Z(5) model with 
J 1  = 1, J z  = 0.45. There is a first-order transition around Pcd = 1.028 and a second- 
order one at Pcd = 1.000. This last value seems to be independent of N. Notice that for 
a MFA to show two transitions, one of them must be first order. In reality this is a defect 
of the approximation and both transitions are second- (or higher-) order, because the 
intermediate phase is soft. 

61 

s 
am 

601 

H 

Figure 6. The maximum of the function G,(H) gives for each p the free energy per particle 
(-of) in MFA. The curves correspond to J 1  = 1 and J2  = 0.45. The curves a to g correspond 
to pd equal to 0.90, 0.99, 1.01, 1.02, 1.026, 1.028 and 1.030 respectively. For each p the 
maximum gives the free energy of the model in the mean-field approximation. One 
transition occurs at p l d  - 1.000 and the second one at pd2- 1.028. 

A1.2. Gauge models 

The issue here is the choice of measure to be used in inequality (A1.3). Since the physics 
is gauge invariant it would seem natural to use a gauge-invariant measure, for example 

where each link belongs to only one plaquette out of a subset P* of plaquettes as shown 
in figure 7. But since we know that a local symmetry cannot be broken spontaneously 
(Elitzur 1975, Luscher 1977), we expect this MFA to show no phase transition at all. In 
fact our calculations with D1[S(r,  p ) ]  show only one phase. 

We could also follow Balian et a1 (1978) and Drouffe and Itzykson (1978) and 
proceed as in the spin case using 
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Figure 7. Set of plaquettes, such that each link belongs only to one plaquette. 

But with this measure, violating gauge invariance, we obtain only one first-order 
phase transition for all N.  In figure 8 we show a typical result for Wilson’s Z(6)  model 

Faced with this dilemma we make a compromise and use a measure which breaks 
(J2 = J3 = 0). 

gauge invariance on only half the total number of sites: 

(A1.9) 
IJ exp[ ;(s(i)s+(4) + ~ ( 2 ) ~ + ( 3 )  + cc) 1 

H D3[S(r, F)I = c exp[ 5 c ( ~ ( 1 ) ~ + ( 4 )  + ~ ( 2 ) ~ + ( 3 )  + cc)] 
S ( r , w )  P* 

18 c 

H 

Figure 8. G 6 ( H )  versus effective field for Wilson’s Z(6) model with the measure (A1.8).  
The curves a to e correspond to J , P ( d -  1) equal to 1.0, 1.3, 1.4, 1.6 and 1.7 respectively 
(J2 = J3 = 0). 
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Proceeding as in the spin case and remembering that the number of plaquettes 
belonging to P" is Md/4 we obtain 

d P e  -pfzz(1n N + ~ ~ ~ N ) - H w ( I - ~ ) + - -  ~ , t 2 ( ~ ) )  (Al .  10) 
2 u = l  

which is identical to the two-dimensional spin result (A1.5) up to a factor d / 2  = 2 and a 
different inverse temperature P.  With this form of MFA we will thus obtain a diagram 
with the same number of phases as fo; the spin system. We feel that this last type of MFA 

is nearer to the truth than the other two. 

Appendix 2. Gauge theory with Higgs fields in three dimensions 

Since in three dimensions the duality transformation takes a plaquette into a site we 
have to add Higgs fields # J ( r )  defined on sites in order to obtain a self-dual system. The 
most general Z(N)-invariant action is now given by 

a Jar  a K, 
A = - - 1  1 - L ( A ~ ) ~  + c c - 2 ] - - x  1 [ y ( # J & ( r ) S ( r ;  f ) # J ( r + f ) ) a  + c c - 2 ]  ( A 2 . 1 )  

P a = l  2 r.i  U = I  

where A ,  are plaquette variables and #J ( Y )  are matter fields satisfying 

[4(r)IN = I .  

Proceeding as in 8 4 we obtain the transfer matrix in the temporal gauge 

1 K ,  
a = l  2 

+ p  1 - [ ( d + ( r ) S ( r ;  f ) # J ( r + f ) ) a  + H C - ~ ]  

where R(r, f) and B(r)  are rotation operators for link and site variables satisfying the 
algebra (2.9).  The functions f m  are defined by equation (2.12) and g, analogously by 

27T N-1 

a = o  
( A 2 . 3 )  

Working in the gauge-invariant subspace and selecting the axial gauge 

S(r ,  2) = 1 (A2.4) 

we introduce variables dual to plaquettes 

= ~ ( r ,  1 ) S ( r  + 7 ,  i ) ~ + ( r  -t 2 ,  1)s+(r, 2) 
existing on  sites i and variables dual to sites 

PI(?, 2 ) = # ~ + ( r + i ) ~ ( r + 2 ,  1)4(r+i+ij  
PI( ; ,  1 ) = # J + ( r t f ) s ( r + i , 1 ) # J ( r + f + i )  

(A2.5) 

(A2.6) 
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existing on links of the dual lattice. The non-local disorder variables are now 

(A2.7) 

From equation (A2.4) it  follows that 

p3(?, 2) = 1. (A2.8) 

The rotation operators can now be expressed in terms of the disorder variables as 

R (r ,  2) = p l  (?)p: (i- 1, i )p3( i -  f j 

R+(r, i )  =p ; ( i )p ; ( i - 2 ,2 )p3 ( i -2 )  (A2.9) 

B + ( r ) = p 3 ( ? - f - 2 ,  I ) p 3 ( i - 2 , 2 ) p ; ( i - f ,  f )&?- i -2 ,2) .  
One easily verifies that the dual variables satisfy the same algebra as the original ones. 
In terms of the dual variables the transfer matrix becomes 

r 

r~ J ,  R K a  
T = n e X p p [  ,=l ~ ( p y ( ? ) + H C - 2 ) - +  r = l a = l  1 -(py(?, 2 i)+HCT-22) 

r ,  I 

R 
+ c c 3 P 3 ( i j  f ) C C 3 ( i + ~ , f ) C L : ( j + j ,  i )PL: ( i ,  f ) , "  +HCI] ,  (A2.10) 

I < , S 2  a=O 

yielding the following self-duality relation when compared with (A2.2): 

Z({JaI, K I ,  Vel, {ge l )  = e Z ( k a I ,  {fa}, {Ka}, { J a I ) .  (A2.11) 

Our duality transformation 9: J,, K,  +go,  fa, is simplified when written in terms of the 
parameters 

R 27TffS 
x, = exp S = l  1 ,BJ~[  - 13, 

R 

s - 1  
y a  "exp 1 pKs 

Diagonalising the cyclic matrices R and B, we obtain from 
(A2.3) the dual parameters 2 and y': 

(A2.12) 

equation (2.12) and 

(A2.13) 

Since 

x, -+ D ( x , )  =: y a + D ( y a ) = i a ,  

gauge and Higgs fields are exchanged by the duality transformation. 
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